تکنولوژیکامپیوتر

هوش مصنوعی یا [ Artificial Intelligence ] چیست؟

هوش مصنوعی [ Artificial Intelligence ] و انواع آن

هوش مصنوعی یا [ Artificial Intelligence ] چیست؟

هوش مصنوعی | Artificial Intelligence به هوشمندی نشان داده شده توسط ماشین‌ها در شرایط مختلف اطلاق می‌شود که در مقابل هوش طبیعی در انسان‌ها قرار دارد. به عبارت دیگر هوش مصنوعی به سامانه‌هایی گفته می‌شود که می‌توانند واکنش‌هایی مشابه رفتارهای هوشمند انسانی از جمله درک شرایط پیچیده، شبیه‌سازی فرایندهای تفکری و شیوه‌های استدلالی انسانی و پاسخ موفق به آنها، یادگیری و توانایی کسب دانش و استدلال برای حل مسایل را داشته باشند.

هوش مصنوعی را باید گستره پهناور تلاقی و ملاقات بسیاری از دانش‌ها، علوم، و فنون قدیم و جدید دانست. ریشه‌ها و ایده‌های اصلی آن را باید در فلسفه، زبان‌شناسی، ریاضیات، روان‌شناسی، عصب‌شناسی، فیزیولوژی، تئوری کنترل، احتمالات و بهینه‌سازی جستجو کرد و کاربردهای گوناگون و فراوانی در علوم رایانه، علوم مهندسی، علوم زیست‌شناسی و پزشکی، علوم اجتماعی و بسیاری از علوم دیگر دارد.

از زبان‌های برنامه‌نویسی هوش مصنوعی می‌توان به لیسپ | Lisp و پرولوگ | Prolog اشاره کرد.

یک «عامل هوشمند» سامانه ای است که با شناخت محیط اطراف خود، شانس موفقیت خود را پس از تحلیل و بررسی افزایش می‌دهد. جان مکارتی که واژه هوش مصنوعی را در سال ۱۹۵۶ استفاده نمود، آن را «دانش و مهندسی ساخت ماشین‌های هوشمند» تعریف کرده‌است.

هوش مصنوعی در علم پزشکی امروزه به دلیل گسترش دانش و پیچیده‌تر شدن فرایند تصمیم‌گیری، استفاده از سامانه‌های اطلاعاتی به خصوص سامانه‌های هوش مصنوعی در تصمیم‌گیری، اهمیت بیشتری یافته‌است. هوش مصنوعی گسترش دانش در حوزهٔ پزشکی و پیچیدگی تصمیمات مرتبط با تشخیص و درمان – به عبارتی حیات انسان – توجه متخصصین را به استفاده از سامانه‌های پشتیبان تصمیم‌گیری در امور پزشکی جلب نموده‌است. به همین دلیل، استفاده از انواع مختلف سامانه‌های هوشمند در پزشکی رو به افزایش است، به گونه‌ای که امروزه تأثیر انواع سامانه‌های هوشمند در پزشکی مورد مطالعه قرار گرفته‌است.

تاریخچه هوش مصنوعی

نقش هوش مصنوعی هر روز در زندگی ما بیشتر می‌شود. آخرین ترند در این زمینه تراشه‌های هوش مصنوعی و کاربردهای مختلف آن‌ها در گوشی‌های هوشمند است. اما شروع توسعه‌ی این تکنولوژی در واقع به خیلی قبل‌تر برمی‌گردد؛ یعنی زمانی در دهه‌ی ۵۰ میلادی که «دانشگاه دارتموث» (Dartmouth College) در ایالات متحده یک پروژه‌ی تحقیقات تابستانی را به هوش مصنوعی اختصاص داد. ریشه‌های هوش مصنوعی را حتی می‌توان در عمق بیشتری از تاریخ و در فعالیت‌های «آلن نیوئل» (Allen Newell)، «هربرت ای. سیمون» (Herbert A. Simon) و «آلن تورینگ» (Alan Turing) جست‌وجو کرد. آزمون مشهور تورینگ در سال ۱۹۵۰ توسط او در مقاله‌ای مطرح شد. این مقاله یکی از اولین اسنادی است که در آن به وجود آمدن ماشین‌های هوشمند پیش‌بینی شده است. با این حال مقوله‌ی هوش مصنوعی تا پیش از معرفی شدن سوپرکامپیوتر «دیپ بلو» (Deep Blue) توسط کمپانی IBM هنوز توجه جهانیان را به خود جلب نکرده بود. این سوپرکامپیوتر اولین ماشینی بود که توانست قهرمان شطرنج جهان «گری کاسپارف» (Garry Kasparov) را در مسابقه‌ای که در سال ۱۹۹۶ میلادی برگزار شد شکست دهد. الگوریتم‌های هوش مصنوعی برای سال‌های متمادی است که در دیتاسنترها و کامپیوترهای بزرگ استفاده می‌شوند، ولی حضور آن‌ها در حوزه‌ی لوازم الکترونیک مصرفی به سال‌های اخیر برمی‌گردد.

تعریف هوش مصنوعی

تعریف هوش مصنوعی آن را به عنوان شاخه‌ای از علوم کامپیوتر مشخص می‌کند که با خودکارسازی رفتارهای هوشمندانه سروکار دارد. بخش سخت ماجرا این است: از آنجا که خود هوش را نمی‌توانیم به درستی تعریف کنیم، امکان تعریف دقیق هوش مصنوعی هم وجود ندارد. به طور کلی اصطلاح هوش مصنوعی برای تشریح کردن سیستم‌هایی به کار می‌رود که هدف آن‌ها استفاده از ماشین‌ها برای تقلید و شبیه‌سازی هوش انسانی و رفتارهای مرتبط با آن است. این هدف گاه ممکن است با استفاده از الگوریتم‌های ساده و الگوهای از پیش تعیین شده محقق شود، ولی گاهی هم نیاز به الگوریتم‌ها فوق‌العاده پیچیده دارد.

انواع مختلف هوش مصنوعی

هوش مصنوعی نمادین

هوش مصنوعی نمادین (Symbolic) با نمادهایی انتزاعی کار می‌کند که برای نشان دادن دانش استفاده می‌شوند. هوش مصنوعی نمادین، هوش مصنوعی کلاسیکی است که بر اساس این ایده کار می‌کند که تفکر انسان را می‌توان در سطحی سلسله مراتبی و منطقی بازسازی کرد. در این روش اطلاعات از بالا با کار کردن روی نمادهای معنی‌دار برای انسان، ارتباطات انتزاعی و نتیجه‌گیری‌های منطقی پردازش می‌شوند.

هوش مصنوعی عصبی

هوش مصنوعی عصبی (Neural AI) در اواخر دهه‌ی ۸۰ میلادی در علوم کامپیوتر محبوبیت پیدا کرد. در این گونه، دانش با استفاده از نمادها نمایش داده نمی‌شود، بلکه به جای آن، نورون‌های مصنوعی و ارتباط میان آن‌ها نماینده‌ی دانش هستند. این هوش مصنوعی چیزی شبیه به یک مغز بازسازی شده است. در این روش دانش کسب شده به قطعاتی کوچک‌تر (نورون‌ها) خرد و سپس از آن گروه‌هایی متصل به هم تشکیل می‌شود. این نوع هوش مصنوعی رویکردی پایین به بالا دارد. بر خلاف هوش مصنوعی نمادین، یک سیستم هوش مصنوعی عصبی باید ابتدا آموزش داده شود و در معرض محرک‌هایی قرار بگیرد تا شبکه‌های عصبی در آن تجربه کسب کنند، بزرگ شوند و اندوخته‌ی دانش بیشتری داشته باشند.

شبکه‌های عصبی

شبکه‌های عصبی (Neural Networks) در لایه‌هایی سازماندهی می‌شوند که با خطوطی شبیه‌سازی شده به یکدیگر متصل هستند. بالاترین لایه، لایه‌ی دریافت است. این لایه مانند حسگری عمل می‌کند که اطلاعات را برای پردازش دریافت می‌کند و آن‌ها را به لایه‌های پایین‌تر می‌فرستد. این فرآیند پس از دریافت اطلاعات با حداقل دو لایه‌ی دیگر (در سیستم‌های بزرگ تا بیش از بیست لایه) ادامه پیدا می‌کند که به صورت سلسه مراتبی روی هم قرار دارند و اطلاعات را با استفاده از پیوندها دسته‌بندی و ارسال می‌کنند. در پایین‌ترین بخش سلسله مراتب لایه‌ی خروجی قرار دارد که به طور معمول تعداد نورون‌های مصنوعی آن از تمام لایه‌های دیگر کمتر است. این لایه داده‌های محاسبه شده را به فرمتی تبدیل می‌کند که برای ماشین قابل خواندن باشد.

شیوه‌ها و ابزارها

ابزارها و شیوه‌های مختلفی برای به کار بردن هوش مصنوعی در دنیای واقعی وجود دارد که برخی از آن‌ها را می‌توان در ترکیب با هم استفاده کرد.

اساس کار تمام این روش‌ها «یادگیری ماشینی» (Machine Learning) است. تعریف یادگیری ماشینی سیستمی است که تجربه را به دانش تبدیل می‌کند. این پروسه به سیستم این توانایی را می‌دهد که الگوها و قوانین را با سرعتی که همواره در حال افزایش است شناسایی کند. در انواع مختلف یادگیری ماشینی از هر دو نوع هوش مصنوعی نمادین و عصبی استفاده می‌شود.

یادگیری عمیق (Deep Learning) زیرگونه‌ای از یادگیری ماشینی است که اهمیت آن رو به افزایش است. در این مورد تنها از هوش مصنوعی عصبی یا همان شبکه‌های عصبی استفاده می‌شود. اکثر کاربردهای امروزی هوش مصنوعی بر پایه‌ی یادگیری عمیق هستند. به لطف امکان گسترش دادن سریع طراحی شبکه‌های عصبی و تبدیل کردن آن‌ها به سیستم‌هایی پیچیده‌تر و قوی‌تر با لایه‌های جدید، مقیاس یادگیری عمیق را می‌توان به سادگی تغییر داد و آن را با کاربردهای بسیار زیادی منطبق کرد.

سه نوع پروسه‌ی یادگیری برای آموزش دادن شبکه‌های عصبی وجود دارد: تحت نظارت، بدون نظارت و یادگیری تقویتی. این سه پروسه روش‌های متفاوت زیادی را مهیا می‌کنند تا بتوان نحوه‌ی تبدیل ورودی به خروجی دلخواه را تنظیم کرد. در یادگیری تحت نظارت، ارزش‌ها و پارامترها از بیرون برای سیستم مشخص می‌شود، ولی در یادگیری بدون نظارت این خود سیستم است که تلاش می‌کند الگوهایی را در اطلاعات ورودی کشف کند که ساختاری قابل تشخیص دارند و می‌توان آن‌ها را بازتولید کرد. در یادگیری تقویتی هم ماشین به صورت مستقل کار می‌کند، ولی بر اساس موفقیت یا شکست، تشویق یا تنبیه می‌شود.

کاربردهای هوش مصنوعی

همین الان هم از هوش مصنوعی در بسیاری جاها استفاده می‌شود، ولی به هیچ وجه همه‌ی این کاربردها در نگاه اول آشکار نیستند. بنابراین انتخاب کردن موقعیت‌هایی که از امکانات این تکنولوژی در آن‌ها بهره برده می‌شود، لزوما به تشکیل فهرستی کامل نمی‌انجامد.

مکانیزم‌های هوش مصنوعی برای تشخیص، شناسایی و دسته‌بندی اشیا و افراد در عکس‌ها ویدیوها بسیار کارآمد هستند. برای رسیدن به این هدف، از مکانیزم ساده ولی سنگین تشخیص الگو استفاده می‌شود. اگر اطلاعات تصویر رمزگذاری نشده باشد و ماشین بتواند آن‌ها را بخواند، عکس‌ها و ویدیوها را به سادگی می‌توان با این روش در دسته‌های مختلفی قرار داد که امکان جست‌وجو و یافتن آن‌ها وجود دارد. چنین تشخیص‌هایی را همچنین می‌توان برای اطلاعات صوتی هم به کار برد.

استفاده از چت‌بات‌ها در بخش خدمات مشتریان روز به روز بیشتر می‌شود. این دستیارهای مبتنی بر متن، کار خود را با استفاده از تشخیص کلمات کلیدی در درخواست مشتری و نشان دادن واکنش متناسب با آن انجام می‌دهند. با توجه به کاربردهای مختلف، این نوع دستیارها می‌توانند ساده‌تر یا پیچیده‌تر باشند.

تجزیه و تحلیل نظرات علاوه بر پیش‌بینی نتایج انتخابات در عالم سیاست، در بازاریابی و بسیاری حوزه‌های دیگر هم استفاده می‌شود. «استخراج نظرات» (Opinion Mining) که همچنین با نام «تجزیه و تحلیل احساسات» (Sentiment Analysis) هم از آن یاد می‌شود، برای جست‌وجو کردن اینترنت در مورد عقاید و عبارات احساسی به کار می‌رود. با این روش‌ها می‌توان نظرسنجی‌هایی را به صورت ناشناس برگزار کرد.

الگوریتم‌های جست‌وجو مانند الگوریتم‌هایی که گوگل استفاده می‌کند، طبیعتا به شدت محرمانه هستند. روش‌های محاسبه، رتبه‌بندی و نمایش نتایج جست‌وجو تا حد زیادی بر پایه‌ی مکانیزم‌هایی کار می‌کنند که از یادگیری ماشینی در آن‌ها استفاده می‌شود.

پردازش کلمات یا بررسی کردن یک متن از نظر دستور زبان و اشتباهات املایی، یکی از کاربردهای کلاسیک هوش مصنوعی نمادین است که برای مدت زمان زیادی از آن استفاده می‌شده. در این روش زبان به عنوان شبکه‌ی پیچیده‌ای از قوانین و دستورالعمل‌ها تعریف می‌شود که قطعات متن را در یک جمله تجزیه و تحلیل می‌کند و در برخی شرایط می‌تواند اشتباهات را تشخیص دهد و تصحیح کند. از همین قابلیت‌ها همچنین در تبدیل نوشتار به گفتار در دستیارهای صوتی مانند سیری، الکسا و گوگل اسیستنت هم استفاده می‌شود.

منبع
وبسایت سیّد مهدی سلیمی

میثم پورواحدی

خوشحالم که با جدیت در حال پروراندن رویایم هستم. گیسوم‌طرح برایم فقط یک رویا نیست ، یک دوست خوب و یک معلم فوقالعادست...

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

این سایت از اکیسمت برای کاهش هرزنامه استفاده می کند. بیاموزید که چگونه اطلاعات دیدگاه های شما پردازش می‌شوند.

دکمه بازگشت به بالا